Condition B and the Quantifier Puzzle

Alex Drummond

17/02/2015 Queen Mary University of London

The Quantifier Puzzle

- ▶ A non-reflexive pronoun can't take a local c-commanding antecedent.
 - $\triangleright\, {\rm It}$ cannot corefer with a local c-commanding DP (1b).

 \triangleright Nor can it be bound by a local c-commanding quantifier — (2b):

- a. John loves his mother.
 b. *John loves him.
 (where him = John)
 a. Every boy loves his friend.
 b. *Every boy loves him.
 (every boy x loves x)

Question: Are both (1b) and (2b) blocked by the same constraint?

Yes: they are both blocked by Condition B Heim (1993, 2007). No: only (2b) is blocked by Condition B Reinhart (1983), Fox (2000), Büring (2005).

Talk Overview

- ▶ Heim is right: both (1b) and (2b) are Condition B violations.
- ▶ But there are some outstanding problems with Heim's approach:¹
 - \triangleright Overgenerates readings for elided VPs.
 - \triangleright Condition B doesn't always prevent a pronoun taking a local c-commanding antecedent.
- ► My solution:
 - \triangleright The **Fixed Reference Constraint**. This is a generalization of the principle that DPs that are not co-indexed must refer to different individuals.
 - \triangleright Condition B is not a constraint in its own right, but a side effect of Object Shift.

1 Heim's analysis

- ▶ Can we bring the referential and quantificational cases together using indices?
- (3) a. $*[Every boy]_1$ loves him₁. b. $*John_1$ loves him₁.
- (4) Condition B

A non-reflexive pronoun can't be coindexed with a local c-commanding DP.

- ▶ But how do we interpret co-indexation?
- ▶ Heim assumes that quantifier phrases such as *every boy* must undergo QR.
- \blacktriangleright Following QR, the quantifier phrase transfers its index to a $\lambda\text{-node},$ which binds its trace.
- (5) *[Every boy] $[\lambda_1 \ [t_1 \text{ loves him}_1]]$ \uparrow QR
- Condition B in (5) is triggered by t_1 and him₁.
- ▶ Indexed DPs are interpreted via **assignments**.
- ▶ An assignment maps indices to individuals, e.g. $\{1 \mapsto \mathbf{John}, 2 \mapsto \mathbf{Mary}\}$.
- (6) He_1 is tall.

$$\begin{split} & [\![\mathrm{He}_1 \text{ is tall}]]\!]^{\{1\mapsto \mathbf{John}\}} = \mathbf{true} \text{ iff John is tall.} \\ & [\![\mathrm{He}_1 \text{ is tall}]]\!]^{\{1\mapsto \mathbf{Bill}\}} = \mathbf{true} \text{ iff Bill is tall.} \end{split}$$

(7) [Every boy] $[\lambda_1 \ [t_1 \text{ loves his}_1 \text{ mother}]]$

 $\llbracket [t_1 \text{ loves his}_1 \text{ mother}] \rrbracket^{\{1 \mapsto \mathbf{John}\}} = \mathbf{true} \text{ iff John loves John's mother.} \\ \llbracket [t_1 \text{ loves his}_1 \text{ mother}] \rrbracket^{\{1 \mapsto \mathbf{Bill}\}} = \mathbf{true} \text{ iff Bill loves Bill's mother.}$

▶ Our two cases now have something semantically in common:

(8) a. [John₁ loves him₁] b. [Every boy] $[\lambda_1 \ [t_1 \text{ loves him}_1]]$

¹These are discussed in Heim (2007), but no very definite solutions are proposed.

2 Indices gone wild

- ▶ Bach and Partee (1980) observe there are many logically distinct ways of linking multiple pronouns to the same quantifier:
- (9) Every boy knows he said he loves his mother.
- (10) Every boy knows he said he loves his mother.
- (11) Every boy knows he said he loves his mother.
- (12) Every boy knows he said he loves his mother.
- (13) Every boy knows he said he loves his mother.
- (14) Every boy knows he said he loves his mother.
- \blacktriangleright All of these different patterns can be distinguished in Heim's system:
 - (15) [Every boy] $[\lambda_1 [t_1 \text{ knows he}_1 [\lambda_2 [t_2 \text{ said he}_2 [\lambda_3 [t_3 \text{ loves his}_3 \text{ mother}]]]]]]$
 - (16) [Every boy] $[\lambda_1 \ [t_1 \text{ knows he}_1 \text{ said he}_1 \ [\lambda_2 \ [t_2 \text{ loves his}_2 \text{ mother}]]]]$
 - (17) [Every boy] $[\lambda_1 \ [t_1 \text{ knows he}_1 \ [\lambda_2 \ [t_2 \text{ said he}_2 \text{ loves his}_2 \text{ mother}]]]]$
- (18) [Every boy] $[\lambda_1 \ [t_1 \text{ knows he}_1 \ [\lambda_2 \ [t_2 \text{ said he}_2 \text{ loves his}_1 \text{ mother}]]]]$
- (19) [Every boy] $[\lambda_1 \ [t_1 \text{ knows he}_1 \ [\lambda_2 \ [t_2 \text{ said he}_1 \text{ loves his}_2 \text{ mother}]]]]$
- (20) [Every boy] $[\lambda_1 \ [t_1 \text{ knows he}_1 \text{ said he}_1 \text{ loves his}_1 \text{ mother}]]$

- \blacktriangleright If the antecedent is a referential expression there are even more possibilities.
- ▶ The pronoun can either be coreferential with the antecedent, bound by the antecedent as a variable, or bound by another a pronoun already linked to the antecedent.
- \blacktriangleright Here's the range of options for two pronouns and one referential antecedent:
 - (21) John₁ knows that he_1 loves his_1 mother.
 - (22) John₁ [λ_2 [t_2 knows that he₂ loves his₁ mother]]
 - (23) John₁ [λ_2 [t_2 knows that he₁ loves his₂ mother]]
 - (24) John₁ [λ_2 [t_2 knows that he₂ loves his₂ mother]]
 - (25) John₁ [λ_2 [t_2 knows that he₂ [λ_3 [t_3 loves his₃ mother]]]]
- ▶ The structures in bold turn out to be troublesome because:
 - $\triangleright\,(19)$ and (23) give rise to unwanted readings for elided VPs.
 - $\rhd\,(18)$ and (19) make it possible to "sneak around" Condition B.

3 Overgenerating readings for elided VPs

- ▶ A simple example of VP ellipsis:
- (26) John [$_{\rm VP}$ smokes]. Bill does [$_{\rm VP}$ smoke] too.
- ▶ The most constrained theory of VP ellipsis imposes two requirements:
- (27) Semantic Indentity

The elided VP must denote the same property as the antecedent VP.

(28) Parallelism

A bound pronoun in an elided VP must be bound in a manner structurally parallel to its counterpart in the antecedent VP.

- ▶ I won't mention Semantic Identity again we'll only be considering sentences where it's satisfied.
- \blacktriangleright But parallelism will play an important role in ruling out unwanted readings.
- ▶ Even with Semantic Identity and Parallelism in place, Heim's system still overgenerates.

Example of the constraining role of parallelism

- ▶ Parallelism blocks the unavailable reading of the elided VP glossed in (29b):
 - (29) John knows that Mary loves his mother. and Jane knows that Bill does [VP - love his mother].
 - a. ... and Jane knows that Bill loves John's mother.
 - b. *...and Jane knows that Bill loves Bill's mother.
- ▶ This reading requires the pattern of binding dependencies in (30), which violates parallelism:
 - (30) *John₁ [λ_2 [t_2 knows that Mary [VP loves his₂ mother]]]

and Jane₃ [λ_4 [t_4 knows that Bill₅ [λ_6 [t_6 does [VP love his₆ mother]]]]]

 \blacktriangleright In the antecedent VP, his is bound by the matrix subject.

 \blacktriangleright In the elided VP, *his* is bound by the embedded subject.

Overgeneration case 1: Dahl's paradigm

- ▶ The problematic pattern of binding dependencies:
 - (31) *John₁ [λ_2 said that he₁ loves his₂ mother]
- ▶ Dahl's paradigm (Dahl 1973):
 - (32) John said that he loved his mother and Bill did $[_{VP}$ say that he loves his mother] too. \neq "... and Bill said that John loves Bill's mother."
 - (33) *John₁ $[\lambda_2 [t_2 \text{ said that } he_1 [VP \text{ loves } his_2 \text{ mother}]]]$

 \blacktriangleright Parallelism is satisfied — *his* is bound by the matrix subject in both the antecedent and elided VPs.

Overgeneration case 2: embedded Dahl's paradigm

- ▶ The problematic pattern of binding dependencies:
 - (34) *Every boy $[\lambda_1 \ [t_1 \text{ knows that he}_1 \ [\lambda_2 \ [t_2 \text{ said he}_1 \text{ loves his}_2 \text{ mother}]]]]$
- ▶ The embedded Dahl paradigm (Roelofsen 2011):
- (35) Every boy knows that he said he loves his mother and that the teacher did [_{VP} say he loves his mother] too.
 ≠ "... and that the teacher said the boy loves the teacher's mother."
- (36) *Every boy $[\lambda_1 \ [t_1 \text{ knows that } he_1 \ [\lambda_2 \ [t_2 \text{ said } he_1 \text{ loves } his_2 \text{ mother}]]$ and that $TT_3 \ [\lambda_4 \ [t_4 \text{ did say } he_1 \text{ loves } his_4 \text{ mother}]]]]$
- ▶ Parallelism is satisfied.

The Fixed Reference Constraint

- ▶ The following generalizations emerge from the preceding data:
- (37) Ban on binding over a coreferential DP

A pronoun may not be bound across a c-commanding referential DP with the same value as the pronoun's antecedent.

(38) Ban on crossing binding dependencies

In cases where multiple pronouns are bound (directly or indirectly) by a single antecedent, the binding dependencies may nest but not cross.

- ▶ I propose to capture (37)-(38) by extending a constraint that is already implicit in Heim's theory:
 - (39) Implicit constraint

If two contraindexed referential DPs stand in a c-command relation, their indices cannot map to the same individual.

- ▶ This constraint is necessary to explain why e.g. the indexation in (40a) cannot give rise to the interpretation in (40b):
- (40) a. John₁ loves him₂. b. #John loves John.

(not a possible interpretation of (a))

Bill₃ [λ_4 [t_2 did say that he₁ [_{VP} loves his₄ mother]]] too

- \blacktriangleright The key idea is to generalize the notion of a referential DP to the notion of a FIXED DP.²
- ▶ This is a relative notion: a DP is or is not FIXED with respect to another DP.
 - (41) A DP α is FIXED with respect to a DP β iff
 - (i) α c-commands β ,
 - (ii) α and β are contraindexed, and
 - (iii) for every phrase Φ , α is bound within $\Phi \to \beta$ is bound within Φ .
- \blacktriangleright Condition (iii) of (41) is satisfied iff either:
 - (a) α is not bound at all, or

(b) every phrase containing the binder of α also contains the binder of β .

- \blacktriangleright We can now state the extended version of the constraint in (39):
 - (42) **Fixed Reference Constraint** (FRC)

If α is FIXED with respect to β , then no phrase containing α and β may be evaluated under an assignment g such that $[\![\alpha]\!]^{g} = [\![\beta]\!]^{g}$.

The base case

- ▶ John is FIXED with respect him (since the two DPs are contraindexed, John c-commands him, and there is no constituent containing a binder of John).
- \blacktriangleright John and him denote the same individual (John) under the assignment shown.
- ▶ When TP is evaluated under this assignment, FRC is therefore violated.

No binding over a coreferential DP

- ▶ In the following LF, he is coreferential with John and his is bound by John:
 - (44) *John₁ [$\lambda_2 \Phi$ [t_2 said that he₁ loves his₂ mother]].
- ▶ He is FIXED with respect to his.
- ▶ The assignment for Φ is $\{1 \mapsto \mathbf{John}, 2 \mapsto \mathbf{John}\}$, and *he* and *his* denote the same individual (John) under this assignment.

- (45) $[\![John]\!]^{\{1\mapsto \mathbf{John}\}} ([\![\lambda_2 \ [t_2 \text{ said that } he_1 \text{ loves } his_2 \text{ mother}]]]\!]^{\{1\mapsto \mathbf{John}\}})$ $= [\![t_2 \text{ said that } he_1 \text{ loves } his_2 \text{ mother}]]\!]^{\{1\mapsto \mathbf{John}, 2\mapsto \mathbf{John}\}}$
- ▶ Thus, FRC is violated.
- ► If we swap the positions of the coreferential and bound pronouns, FRC is no longer violated, since no DP within Φ is FIXED with respect to any other DP in Φ :
 - (46) John₁ $[\lambda_2 \Phi][t_2 \text{ said that } he_2 \text{ loves } his_1 \text{ mother}]].$

No crossing binding dependencies

(47) [Every boy] $[\lambda_1 [t_1 \text{ knows he}_1 [\lambda_2 \Phi][t_2 \text{ said he}_1 \text{ loves his}_2 \text{ mother}]]]]$

- *He* within Φ is FIXED with respect to *his*.
- ▶ Suppose that the domain contains a single boy, Tom.
- ▶ The assignment for Φ is $\{1 \mapsto \text{Tom}, 2 \mapsto \text{Tom}\}$, and *he* and *his* denote the same individual (Tom) under this assignment.
- (48) $\llbracket [Every boy] \rrbracket (\llbracket [\lambda_1 \dots] \rrbracket)$
 - $= \llbracket [t_1 \text{ knows he}_1 \ [\lambda_2 \ [t_2 \text{ said he}_1 \text{ loves his}_2 \text{ mother}]] \rrbracket ^{\{1 \mapsto \mathbf{Tom}\}}$
 - $= \llbracket \text{knows} \rrbracket (\llbracket [\text{he}_1 \ [\lambda_2 \ [t_2 \text{ said he}_1 \text{ loves his}_2 \text{ mother}]]] \rrbracket^{\{1 \mapsto \mathbf{Tom}\}})(\mathbf{Tom})$
 - $= [[knows]]([[he_1]]^{\{1 \mapsto \mathbf{Tom}\}}([[\lambda_2 [t_2 \text{ said } he_1 \text{ loves } his_2 \text{ mother}]]]]^{\{1 \mapsto \mathbf{Tom}\}}))(\mathbf{Tom})$
 - $= [[knows]]([[t_2 \text{ said } he_1 \text{ loves } his_2 \text{ mother}]]]]^{\{1 \mapsto \mathbf{Tom}, 2 \mapsto \mathbf{Tom}\}})(\mathbf{Tom})$
- ► FRC is therefore violated.
- ▶ Establishing that FRC is **not** violated by nested binding structures is a bit more involved, since we need to check every evaluation of every relevant constituent.

(49) $\overline{\mathbb{A}}[\operatorname{EB}^{\mathbb{B}}[\lambda_1 \ \overline{\mathbb{C}}][t_1 \text{ says he}_1 \ \overline{\mathbb{D}}[\lambda_2 \ \overline{\mathbb{E}}[t_2 \text{ thinks } \overline{\mathbb{F}}[\operatorname{he}_2 \text{ loves his}_1 \text{ mother}]]]]]$

- \blacktriangleright a can be evaluated with respect to an empty assignment so that there is no possibility of FRC being violated.
- Assume again that the domain contains a single boy, Tom. If we start from an empty assignment, \mathbb{B} will be evaluated with respect to the assignment $\{1 \mapsto \text{Tom}\}$, which cannot violate FRC.

 $^{^{2}}$ Schlenker (2005) has argued that significant insight can be gained by having a version of (39) play a greater role in the theory. I will develop a similar intuition along rather different technical lines.

▶ The same goes for $\overline{\mathbb{C}}$, $\overline{\mathbb{D}}$.

- ▶ \blacksquare will be evaluated with respect to the assignment $\{1 \mapsto \text{Tom}, 2 \mapsto \text{Tom}\}$. This raises the possibility of a violation of FRC. However, no DP within \blacksquare is FIXED with respect to any other DP within \blacksquare , so there can be no violation of FRC.
- \blacktriangleright The same goes for F.

4 Sneaking around Condition B

- (50) *Every boy $[\lambda_1 [t_1 \text{ knows he}_1 [\lambda_2 [t_2 \text{ said he}_2 \text{ loves him}_1]]]]$
- \blacktriangleright Since him is not co-indexed with the second he in (50), Condition B is not violated.
- \blacktriangleright Unfortunately there is evidence that the pattern of binding dependencies in (50) is available.
- \triangleright (52) is the only structure that can derive the indicated reading of the second conjunct of (51) without violating parallelism:
- (51) Every boy knows that he said he loves his mother and that the teacher did $[_{VP}$ say he loves his mother] too. = "... that the teacher said he loves the boy's mother."
- (52) Every boy $[\lambda_1 \ [t_1 \text{ knows that } he_1 \ [\lambda_2 \ [t_2 \text{ said } he_2 \text{ loves } his_1 \text{ mother}]]$ and that $TT_3 \ [\lambda_4 \ [t_4 \text{ did say } he_4 \text{ loves } his_1 \text{ mother}]]]]$
- \blacktriangleright This raises quite a tough problem, because it seems that we must either

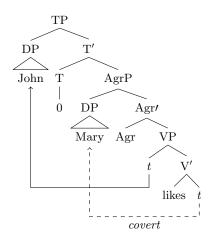
 \triangleright complicate Condition B, or

 \triangleright weaken the parallelism constraint on VP ellipsis.

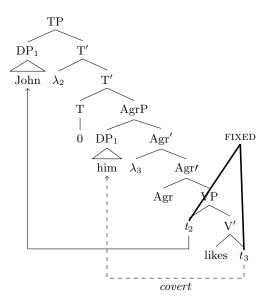
Complicate Condition B?

- ▶ Heim (1993):
- (53) α and β are codetermined iff
 - (i) $\alpha = \beta$,
 - (ii) either one of α or β is bound by the other via a λ ,
 - (iii) α and β are bound via the same λ , or
 - (iv) for some γ , α and γ are codetermined and so are γ and β .
- (54) Condition B (Heim's version)A non-reflexive pronoun may not be not codetermined with a local c-commanding DF

Weaken the parallelism constraint?


- ▶ Fox (2000), Schlenker (2005), Büring (2005), Roelofsen (2011) each in various ways propose to relax the parallelism constraint on VP ellipsis.
- ▶ In Büring's system, for example, all readings of the elided VP can be derived if the first conjunct has the pattern of binding dependencies in (9).

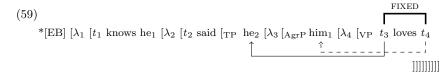
A third option: Condition B as a side effect of Object Shift


(55) **Object Shift**

Objects in English raise covertly to the specifier of AgrP above VP. (Johnson 1991, Chomsky 1992)

(56) John likes Mary.

- ▶ As a consequence of Object Shift, Condition B configurations will violate the Ban on Crossing Binding Dependencies (and hence FRC):
- (57) John₁ likes him_1 .



- ▶ The trace of A-movement is interpreted as a variable bound via a λ -node that adjoins below the landing site (Heim 1993, Heim and Kratzer 1998).
- ▶ In (57), him is FIXED with respect to t_2 and yet the two expressions denote the same individual. This leads to a FRC violation.
- ▶ Independently-motivated constraint requires t_2 and t_3 to be contraindexed:

(58) Don't Steal My Trace!

A moved phrase can bind no traces other than its own.

 \blacktriangleright We can now return to (50), the original problematic case, following object shift of the offending pronoun *him*:

FRC is violated as a result of t_3 being FIXED with respect to t_4 .

- ▶ Pronouns non-local to their antecedents don't trigger FRC violations:
- (60) John₁ loves his_1 mother.

▶ In (60), t_2 is again FIXED with respect to t_4 , but since they denote distinct individuals (John and John's mother), there is no FRC violation. *His mother* is FIXED with respect to t_2 , but for the same reason, this does not give rise to a FRC violation. *John* is FIXED with respect to t_2 , but for all constituents which contain both *John* and t_2 , the assignment is simply $\{1 \mapsto \mathbf{John}\}$, so there is no FRC violation. The same logic applies with regard to *his mother* and t_4 .

5 Main advantages of the analysis

- ▶ Unified treatment of Dahl's paradigm and the embedded Dahl paradigm.
- ▶ We can keep the parallelism constraint on VP ellipsis.
- ▶ No need to complicate Condition B in fact we don't need it at all.

References

- Bach, Emmon, and Barbara H. Partee. 1980. Anaphora and semantic structure. In *Papers from the Parasesion on Pronouns and Anaphora*, ed. Jody Kreiman and Almerindo E. Ojeda, 1–28. Chicago Illinois: University of Chicago.
- Büring, Daniel. 2005. Bound to bind. Linguistic Inquiry 36:259–274.
- Chomsky, Noam. 1992. A minimalist program for linguistic theory, volume 1. MIT, Cambridge Massachusetts: MIT Working Papers in Linguistics.
- Dahl, Östen. 1973. On so-called sloppy identity. Synthese 26:81–112.
- Fox, Danny. 2000. Economy and semantic interpretation. Cambridge, Massachusetts: MIT Press.
- Heim, Irene. 1993. Anaphora and semantic interpretation: A reinterpretation of Reinhart's approach. SfS-Report 7–93, Universität Tübingen, Germany.
- Heim, Irene. 2007. Forks in the road to Rule I. In *Proceedings of NELS 38*, ed. M Abdurrahman, A Schardl, and M Walkow.
- Heim, Irene, and Angelika Kratzer. 1998. Semantics in generative grammar. Malden, MA: Blackwell.
- Johnson, Kyle. 1991. Object positions. Natural Language and Linguistic Theory 9:577–636.
- Reinhart, Tanya. 1983. Coreference and bound anaphora: A restatement of the anaphora questions. *Linguistics and Philosophy* 6:47–88.
- Roelofsen, Floris. 2011. Free Variable Economy. Linguistic Inquiry 42:692–697.
- Schlenker, Philippe. 2005. Non-redundancy: Towards a semantic reinterpretation of Binding Theory. Natural Language Semantics 13:1–92.